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Due to the highly nonlinear behavior of clothing, modelling fine-scale garment deformation on arbitrary
meshes under varied conditions within a unified network poses a significant challenge. Existing methods
often compromise on either model generalization, deformation quality, or runtime speed, making them less
suitable for real-world applications. To address it, we propose to incorporate multi-source graph construction
and pooling to achieve a novel graph learning scheme. We first introduce methods for extracting cues from
different deformation correlations and transform the garment mesh into a comprehensive graph enriched
with deformation-related information. To enhance the learning capability and generalizability of the model,
we present structure-preserving pooling and unpooling strategies for the mesh deformation task, thereby
improving information propagation across the mesh and enhancing the realism of deformation. Lastly, we
conduct an attribution analysis and visualize the contribution of various vertices in the graph to the output,
providing insights into the deformation behavior. The experimental results demonstrate superior performance
against state-of-the-art methods.
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1 INTRODUCTION
The development of digital garments with accurate behaviors for dressing avatars is a vital focus in
computer graphics research, applicable to industries from film and gaming to virtual try-ons and
the metaverse. However, traditional methods often confront a predicament between deformation
quality and generation efficiency. Methods such as linear blend skinning [Magnenat-Thalmann
et al. 1989] and pose space deformation [Lewis et al. 2000] are straightforward to implement and
are capable of producing garment deformations quickly, thereby enabling clothing animations to
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run at interactive speeds. Nonetheless, these techniques often compromise on realism, leading
to a lack of fine detail and dynamic behavior. In contrast, physics-based simulations [Cirio et al.
2014a; Nealen et al. 2006] offer high-quality results by numerically resolving each step of geometric
changes in the garment mesh. However, these methods are computationally intensive and can be
prohibitive, especially for time-sensitive or computationally resource-constrained applications.
In recent years, machine learning has demonstrated significant potential in enhancing perfor-

mance and fidelity in complex tasks. The use of neural networks in the realm of clothing deformation
has similarly yielded successful results, effectively approximating clothing behavior through low-
dimensional parametrization of body shape and pose. Despite this, the highly specific nature of
the trained model to a particular garment creates challenges when applying it to other garments
with arbitrary mesh topology and varying numbers of vertices [Bertiche et al. 2021, 2022; Patel
et al. 2020]. This lack of generalizability significantly restricts the real-world applicability of these
methods, given that most scenarios demand a diverse range of garments.

As a consequence, the utilization of graph neural networks (GNNs) in clothing deformation has
gained interest in recent studies [Grigorev et al. 2023; Li et al. 2023a; Vidaurre et al. 2020]. This
is primarily due to the inherent ability to generalize, notably allowing the mesh structure to be
agnostic. However, vanilla graph learning-based approaches face substantial technical challenges
due to the highly individualized variations in mesh deformations across diverse garments and the
extensive scale of data: (1) model learning difficulty: as the number and variability of mesh
graphs increase, the model needs to deepen to manage complex features, yet issues with model
convergence and gradient vanishing problem. (2) unnatural outputs: deep GNNs can be likened
to low-pass filters where graph updates between layers primarily originate from the local feature
aggregation across neighborhood vertices. This leads to difficulties in long-distance information
transition, resulting in poor interactions among vertices in simulated garments.

Motivated by existing challenges, we propose a novel multilevel framework to handle irregular
domains with arbitrary garment meshes based on generalized attention mechanism (as depicted in
Fig. 1). In particular, we initially analyze and categorize the key factors influencing garment deforma-
tion, and then design distinct network components to handle multi-source garment behavior-related
information. This process results in the creation of graph representations rich in deformation cues.
Then, to ensure effective propagation and exchange of information among graph nodes, we propose
straightforward yet effective pooling and unpooling strategies specifically tailored for the clothing
deformation task. In alignment with the standard 3D animation pipeline, our network is structured
to learn a nonlinear mapping from an input space, which includes garment-body features, to
garment skinning weights and blend shapes. Our approach offers a simple implementation process
and also ensures compatibility with any graphics engine. Our contributions are as follows:

• We devise a set of strategies for generating descriptions centered on deformation-related
information, aiding in the construction of garment graph representations enriched with multi-
source cues. For the body and the garment global information, we design distinct components
to extract their high-dimensional features according to their respective characteristics. These
features, serving as latent cues, are then combined with the local features of the garment,
resulting in an integrated graph representation. This representation enables easy application
of the model to scenes featuring diverse objects.
• We present structure-preserving pooling and unpooling methods for graph learning-based
approximation of garment deformation. Unlike other multiscale GNNs, our method provide
a robust solution that both retains the mesh connectivity of the overall structure during the
mesh coarsening process, and considers the neighbor information of the original graph nodes
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Fig. 1. The overview of our deformation network. The network operates as an end-to-end system, taking
input in the form of garment, body, and motion sequences to generate deformation results.

when refining back to a fine mesh. The method facilitates the diffusion and aggregation of
information within the mesh, leading to improved learning ability and deformation quality.
• We conduct an attribution analysis for evaluation aimed at enhancing the explainability of
our approach. With the use of a gradient-based attribution method, we highlight how the
proposed pooling and unpooling strategies influence network decisions and directly affect
the behavior of garment mesh nodes.

We also evaluate our method on multiple garments and human bodies, achieving reasonable
deformation predictions at an average rate of 402.1 frames per second (fps). In comparison to state-
of-the-art learning-based approaches, our method excels in establishing a well-rounded balance
between model generalization, deformation quality, and efficiency, thereby demonstrating superior
overall performance.

2 RELATEDWORKS
In this section, we discuss existing garment deformation approaches, by classifying them into
physics-based simulations and learning-based methods.
Physics-based simulations (PBS) are widely recognized for their ability to achieve a high

degree of realism in deformation effects [Choi and Ko 2002; Narain et al. 2012]. They leverage
the discretizations of classical mechanics to accurately simulate the deformation process of cloth.
Despite their impressive capability to generate realistically detailed deformation outcomes, they
inherently come with substantial computational demands, require extensive computational re-
sources, and pose significant challenges in reaching interactive speeds [Jiang et al. 2017; Li et al.
2018]. To enhance the efficiency of PBS, a considerable amount of research has been conducted.
Approaches include leveraging the parallel computational capabilities of modern GPUs [Cirio
et al. 2014b; Tang et al. 2016; Wu et al. 2020], simplifying and focusing on constrained scenarios
[Vassilev et al. 2001], and adding intricate high-frequency wrinkles to low-frequency meshes [Chen
et al. 2021; Wang 2021]. Nevertheless, even with these advancements, these approaches remain
inadequate when faced with limited computational capacity. Despite research attempts to introduce
perceptual control [Sigal et al. 2015] and the automatic inference of physical parameters [Jeong
et al. 2015; Stoll et al. 2010; Yang et al. 2018], these methods are restricted to function optimally
only in controlled environments and still require the implementation of PBS. Consequently, these
approaches continue to demand substantial time for upfront parameter tuning and demand a high
level of expertise in parameter adjustment.
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Learning-based methods aim at learning a function that directly yields the anticipated de-
formation for any specified input [Li et al. 2023b; Pan et al. 2022; Santesteban et al. 2022b, 2021].
These approaches have seen increased adoption in the realm of clothing animation in recent years,
primarily due to their superior efficiency and enhanced automation compared to traditional physics-
based simulations. Building on the foundational work of pose space deformation [Lewis et al.
2000], several studies [Hahn et al. 2014; Patel et al. 2020; Santesteban et al. 2019; Tiwari et al. 2020;
Wang et al. 2018] have suggested learning garment deformations from various parameters such
as pose, shape, or garment size. Although these models exhibit rapid performance, they struggle
to predict plausible folds when dealing with loose garments. To enhance the reconstruction of
garment appearance details, researchers [Bertiche et al. 2021, 2022; Santesteban et al. 2022a] recast
the physics-based simulation as an optimization problem, incorporating a set of physics-based loss
terms. These methods also introduce unsupervised strategies, eliminating the need for ground truth
data during the training process. More recently, method has been developed that can effectively
generate deformations for loose-fitting dresses [Pan et al. 2022]. However, a shared limitation of
all the aforementioned methods is their inability to generalize to garments with different mesh
structures.

To mitigate the model generalization issue, recent studies have shifted focus to the use of graph
neural networks (GNNs). This is largely due to their remarkable ability to process 3D data and their
independence from requiring upfront knowledge of the mesh graph structure. For instance, Li et
al. [Li et al. 2020, 2021] apply graph attention network (GAT) [Veličković et al. 2018] to predict
nonlinear deformations across a variety of articulated characters. However, these methods still face
challenges in accurately reproducing complicated clothing wrinkles. In response to this challenge,
the authors subsequently propose a unified graph-attention-based detail-aware network (DANet)
for garment deformations [Li et al. 2023a], with the garments worn on top of the parametrized SMPL
body [Loper et al. 2015]. Meanwhile, other works use different architectures such as GraphUNet-
based [Grigorev et al. 2023; Vidaurre et al. 2020] and PointNet-based frameworks [Gundogdu et al.
2022] to perform the task of cloth deformation. However, these methods do not entirely solve
the generalization problem: they either struggle with variations in topology, or face difficulties in
effectively capturing and leveraging global information derived from the available data to produce
satisfactory results for new garments or poses.
Graph pooling methods, inspired by pooling layers in convolutional neural networks, are

designed to generate coarser sub-graphs that enhance message propagation through hierarchical
representation. These characteristics are crucial for simulating cloth force propagation and have
directly informed the design of our method. Notable recent developments in this field include
DiffPool [Ying et al. 2018], TopKPool [Gao and Ji 2022], SAGPool [Lee et al. 2019], ASAP [Ranjan et al.
2019], and rasterization-based pooling methods [Lino et al. 2021, 2022]. Despite their innovations,
these methods contend with common obstacles such as pooling inefficiencies and the preservation
of stable mesh structures-critical for maintaining the integrity of 3D models and other graph-based
analysis.

3 METHODOLOGY
3.1 Garment Deformation Model
In computer animation, the standard deformation pipeline, which leverages skinning weights and
blend shapes to calculate a garment deformation in a specific pose, is a common practice. Known
for its simplicity and high compatibility, our approach also adopts this pipeline. In particular, we
begin with an initial garment mesh template T ∈ R𝑁×3 with arbitrary number of vertices 𝑁 , a
basis SMPL [Loper et al. 2015] human body T𝑏 ∈ R𝑁𝑏×3 with 𝑁𝑏 number of vertices and shape
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parameter 𝛽 , and a sequence of pose histories Θ𝑡 = {𝜃 𝑡 , 𝜃 𝑡−1, ..., 𝜃 𝑡−𝑚+1} from (𝑡 −𝑚 + 1)-th frame
to the current frame 𝑡 , our goal is to learn a garment deformation network capable of establishing
an accurate mapping from these variables to garment temporal skinning weights and blend shapes.
This mapping can be represented as follows:

Network : {T,T𝑏,Θ𝑡 , 𝛽} → {W𝑡 , 𝐵𝑡 }, (1)

whereW𝑡 ∈ R𝑁×𝑆 denotes the garment skinning weights and 𝑆 is the joint number of the body
skeleton. 𝐵 ∈ R𝑁×3 represents the blend shape. Next, by applying a skinning function𝑊 , the
garment deformation at 𝑡-th frame𝑀𝑡 can be obtained:

𝑀𝑡 (T,T𝑏,Θ𝑡 , 𝛽) =𝑊 (𝑇 𝑡 (T,T𝑏,Θ𝑡 , 𝛽), 𝐽 (𝛽), 𝜃 𝑡 ,W𝑡 (T,T𝑏,Θ𝑡 )), (2)
𝑇 𝑡 (T,T𝑏,Θ𝑡 , 𝛽) = T + 𝐵𝑡 (T,T𝑏,Θ𝑡 , 𝛽), (3)

where the deformed garment mesh𝑇 𝑡 in rest pose is calculated by adding the predicted blend shape
𝐵𝑡 (·) to the mesh template T. Using the learned skinning weightsW𝑡 and the body joint location
𝐽 (·), the skinning function𝑊 (·) (e.g., linear blend skinning) deforms the unposed mesh 𝑇 𝑡 into the
deformed mesh𝑀𝑡 under the current state 𝑡 .

In real-world applications, clothing comes in various styles, encompassing not just tight-fitting
garments but also loose-fitting ones. Consequently, we cannot simply assume that the garment
mesh 𝑀𝑡 deforms in the same way as the body, as in general skinning algorithms. To ensure a
natural outcome for𝑀𝑡 , the skinning weightsW𝑡 and blend shapes 𝐵𝑡 in Eq. (2) and Eq. (3) need
to satisfy the following conditions. First, the skinning weights must accurately capture the dynamic
impacts of temporal skeletal transformations on the vertices of different garments during the
movement. Second, the blend shapes need to be adjusted non-linearly, factoring in multiple sources
of features from both the human body and the garment itself, along with the motion state, in order
to ensure coherent detailed deformation. In the following subsection, we will provide a detailed
explanation on how to integrate various types of information to ensure thatW𝑡 and 𝐵𝑡 fulfill the
aforementioned conditions.

3.2 Multi-Source Information Processing
Garment graph information. Our objects of deformation are 3D garments, which are inher-
ently complex, showcasing a wide range of shapes and topologies. Moreover, the vertex-to-vertex
interactions within a given garment exhibit flexible changes corresponding to the deformation.
Consequently, to represent such data in a compact and efficient manner, we opt to construct a graph
G = (X, E) for the garment mesh. Here, X = {𝑥1, 𝑥2, ..., 𝑥𝑁 } is the feature set of all 𝑁 vertices, and
E represents the mesh edges, denoting the connectivity between vertices. To make the vertices
distinguishable, we assign features to each vertex, including vertex position, normal, and distance
to all body joints, resulting in the feature vector 𝑥𝑖 .
After constructing the garment graph, we employ a garment graph encoder Egg : R𝑁×𝐹0 →

R𝑁×𝐹×𝐾 to transform input graph node features 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ]⊤ into high-level latent repre-
sentations. To handle the irregularities inherent in the graph structure and prioritize significant
node information, we introduce a mask self-attention block in Egg, drawing inspiration from the
GAT. Specifically, the feature transformation in one attention block can be expressed as:

𝑥 ′𝑖 = 𝜎 (
1
𝐾

𝐾∑︁
𝑘=1

∑︁
𝑗 ∈N𝑖

𝛼𝑘𝑖 𝑗𝐻
𝑘𝑥𝑖 ), (4)

where 𝑥 ′𝑖 denotes the transformed feature of node 𝑖 , 𝜎 is the nonlinear activation function, 𝐾
is the number of attention heads (set as 𝐾 = 𝑆 , the number of body joints), 𝛼𝑘𝑖 𝑗 is the attention
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coefficient between nodes 𝑖 and its neighborhood 𝑗 in the 𝑘-th attention head, 𝐻𝑘 is the learned
linear transformation for the 𝑘-th attention head, and 𝑥𝑖 is the original feature of node 𝑖 . The multi-
head features can be concatenated or summed in practice. After processed by several attention
blocks, the graph can be encoded as Ggg := Egg (G) with node features 𝑋 gg.
Garment style information.While we incorporate local information for each vertex within

the garment graph, it is important to note that the global context of the garment is also pivotal
in effectively modelling garment deformation. For instance, garment dresses or jumpsuits exhibit
significantly different styles. It is essential to characterize their shapes holistically to guide their
individual deformation behavior within a unified model effectively. To achieve this, we construct
an 𝑁 × 𝑁 affinity matrix 𝐺 for the garment mesh template T. In this matrix, 𝐺𝑖 𝑗 signifies the
affinity between the 𝑖-th and 𝑗-th vertices, which we choose to represent using geodesic distance.
The distances inherently reflect the shape of the garment and assist in establishing semantically
meaningful relationships. For instance, two vertices situated on the same sleeve of a shirt are likely
to share a closer relationship (despite potentially being distant in Euclidean space) than a vertex
on a sleeve and another on the shirt’s body. To improve the efficiency without loss of informative
expressiveness, we apply the Nyström approximation [Fowlkes et al. 2004] to generate a low-rank
approximation �̃�nys = 𝑈𝑊 +𝑈 ⊤ ∈ R𝑁 ∗×𝑁 ∗ of the original 𝐺 , where 𝑁 ∗ ≪ 𝑁 . 𝑈 ∈ R𝑁×𝑁 ∗ is a
matrix consisting of 𝑁 ∗ columns sampled from 𝐺 and𝑊 ∈ R𝑁 ∗×𝑁 ∗ is the matrix consisting of the
intersection of these columns with the corresponding rows of 𝐺 .
As in the bottom left of Fig. 1, we visualize the matrix 𝐺 and its approximation �̃�nys according

to the numerical magnitude. We use the eigenvalues of �̃�nys as global descriptors to characterize
the shape of a garment. Then, these eigenvalues are forwarded into a garment style encoder
Egs : R𝑁 ∗ → R×𝐹 to generate style-related latent cues 𝐶gs := Egs (�̃�nys). These cues are multiplied
with 𝑋 gg and fed into another mask self-attention block to yield 𝑋 gg ∈ R𝑁×𝐹×𝑆 . The resulting
feature is subsequently used to integrate with body shape information.
Body shape information. Another crucial factor influencing garment deformation is the

underlying body shape, as different body shapes induce varying global and local deformation
behaviors in garments. For example, a garment worn on a larger body with a tight fit tends to
conform more closely to the body’s movement, resulting in denser detail folds. Conversely, a
garment on a slimmer body often displays more dynamic behavior, typically characterized by wider
folds. To characterize specific dimensions and proportions of different body parts, we introduce a
joint-vertex distance feature 𝐷 ∈ R𝑁𝑏×𝑆 for body mesh T𝑏 to describe its shape.

Subsequently, we process these shape features using a body shape encoder Ebs : R𝑁𝑏×𝑆 → R𝐹×𝑆 .
Composed of multilayer perceptrons (MLPs), this encoder transforms the features into body-related
latent cues, denoted as 𝐶bs := Ebs (𝐷).
Skinning weights and blend shapes generation. Incorporating deformation related cues

into the garment graph is a crucial step in achieving a more accurate representation of garment
behavior. To this end, we combine information from body and garment together:

𝑋 fuse = 𝑋 gg ⊙ 𝐶bs, (5)

where ⊙ denotes element-wise multiplication. After integration, 𝑋 fuse ∈ R𝑁×𝐹×𝑆 serves as the
feature matrix of the graph Gfuse, providing a more comprehensive representation of the garment
deformation association information. Note that for each garment-body pair, this integrated graph
needs to be generated only once initially.

Temporal information related to motion significantly influences the dynamics of a garment, par-
ticularly for relatively loose items like dresses and wide-legged trousers. To ensure a continuous and
natural effect, dynamic skinning weights and blend shapes must be assigned to each state. Specifi-
cally, in the generation of skinning weights, given a motion sequence Θ𝑡 = {𝜃 𝑡 , 𝜃 𝑡−1, ..., 𝜃 𝑡−𝑚+1}
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where each 𝜃 encompasses the axis-angle of each joint and the translation of the root relative to the
preceding frame, we utilize a temporal encoder Et1 : R3(𝑆+1)×𝑚 → R𝐹 composed of long short-term
memory (LSTM) to extract the motion state features. These features are then combined with the
integrated graph features to obtain the current skinning weightsW𝑡 :

W𝑡 = 𝑋 fuse ⊗ Et1 (Θ𝑡 ), (6)

where ⊗ is the multiplication operator. The process of generating blend shapes is more complex
compared to that of skinning weights, as it necessitates compensation for personalized detail folds.
To accommodate this, we initially process the body shape 𝛽 and motion Θ𝑡 further in order to
compute the velocity states V𝑡 of all body vertices. The body state features are then extracted by
another temporal encoder Et2 : R3𝑁𝑏×𝑚 → R𝐹𝑆 and combined with 𝑋 fuse′ generated by flattening
𝑋 fuse to form motion-related integrated graph features �̃� fuse. The corresponding graph G̃fuse is
finally input into the multilevel processing moduleMmp to generate the blend shapes:

�̃� fuse = 𝑋 fuse′ ⊙ Et2 (V𝑡 ), (7)

𝐵𝑡 :=Mmp
(
G̃fuse

)
. (8)

To efficiently learn the details of mesh deformation, we incorporate the multilevel structure used
inMmp, including both pooling and unpooling strategies. We will elaborate on this aspect in the
subsequent subsection.

3.3 Structure-Preserving Pooling
Garment deformation should be able to represent the propagation of information within the mesh
and their subsequent impact on the deformation details. Consequently, for a deformation model, the
influence of a vertex should extend to as many neighboring vertices as possible during the feature
propagation to avoid the “locality problem.” Graph pooling naturally aids in the rapid diffusion of
vertex information. However, unlike other graph machine learning tasks, garment graph pooling
should have the ability to preserve the connectivity of the garment’s overall structure, which is
the basis for achieving neural simulation on clothing mesh. The corresponding unpooling should
fully consider the surrounding vertex information to return the fine graph. Simultaneously, given
that vertices could spatially come into contact due to bending and shearing during the deformation
process, graph pooling should avoid being affected by Euclidean spatial proximity. Based on these
considerations, we use the garment graph information itself to design the pooling strategy.
Our initial inspiration stems from the preservation of second-order connections in a directed

acyclic graph. As shown in the pooling part of Fig. 1, every alternate depth’s pooling eliminates
current first-order neighbor vertices. To achieve a partition on a garment mesh, we initially de-
termine a seed vertex 𝑒𝑒𝑐𝑐 according to the eccentricity of the garment graph G0 in rest pose and
calculate the geodesic distances 𝑑 from the seed to all other vertices. It is important to clarify that
the term “geodesic distance” in this context is drawn from graph theory and signifies the shortest
path connecting two vertices, measured by the count of edges along the minimal connecting path.
Following this, we traverse the mesh, discarding vertices X𝑟 that exhibit an odd geodesic distance,
thereby obtaining the vertex set X𝑐 of the pooled graph. Edges are further added to the retained
coarse vertex set based on the “from” and “to” vertices connected to the removed vertices, where
the vertices with connection relationships in the original graph are also connected. The detailed
procedure of graph pooling is shown in Algorithm 1 of Appendix A.

For unpooling, we find that weighted filling of vertex features, based on the neighbor information
𝐴 of the fine graph, effectively eliminates wave-like deformation artifacts. The details of our graph
unpooling are provided in Algorithm 2 of Appendix A. For clarity, we append a superscript to the
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Fig. 2. The wave-like artifacts when using directly using vertex features before pooling for unpooling feature
transition.

vertex feature variables in the unpooling algorithm. Geometrically, 𝐴𝑖 𝑗 = 1 indicates the existence
of edge (𝑖, 𝑗). Our method begins by determining the neighbor relationships N𝑟0 and N𝑐0, which
are obtained through the set of removed vertices and the vertex set of the coarse graph. Following
this, we calculate the weight �̂�𝑖 𝑗 and proceed to directly construct the coarse vertex features into
the fine graph. Finally, we normalize �̂�𝑖 𝑗 and use edge weight𝑤𝑖 𝑗 to weight the neighboring vertices
of the removed vertex to reconstruct its features.

The positive effects of using graph pooling on character and garment deformation models have
been verified [Li et al. 2021; Vidaurre et al. 2020]. More recently, hierarchical graphs are designed
to achieve diverse garment deformation with one network [Grigorev et al. 2023], that their idea
aligns with our approach. Though both methods leverage this idea, the modes of information
transition we adopt differ in important ways. They discard the connectivity of vertices in the
original graph after pooling operation, and directly use vertex features before pooling to populate
vertex features during unpooling operation. In contrast, our method maintains the fine graph’s
connectivity within the coarse graph, leveraging neighborhood information during unpooling for
vertex feature returning. Although it is challenging to theoretically ascertain which mode prevails,
when directly applied to generate deformation using the skinning weights and blend shape pipeline,
a standard in almost all graphics engines, our method successfully address the wave-like artifacts
in the results compared with other transition modes, as shown in Fig. 2. Such artifacts typically
appear in flatter clothing areas, but not all poses could induce artifacts. Accounting for neighboring
vertex information during transition can effectively address this problem. After establishing the
strategy of pooling and unpooling, we follow the GraphUNet [Gao and Ji 2022] fashion to construct
our multi-resolution processing moduleMmp for generating blend shapes 𝐵𝑡 . Consequently, with
the skinning weights and blend shapes, we are able to compute the final garment deformation𝑀𝑡 .

4 EXPERIMENTS
For the dataset, we collect various types of garments from CLOTH3D [Bertiche et al. 2020], hu-
man body from SMPL [Loper et al. 2015], and continuous motions from CMU Mocap dataset
[Carnegie-Mellon 2010]. We then simulate garment-body pairs using silk-like fabrics in Blender.
The training set consists of 55 garments and nine body shapes, totaling approximately 50,000 poses.
The validation set contains five garments and three body shapes, with around 3,000 poses. The test
set contains 10 garments with randomly generated body shapes, with around 8,000 poses. There is
no overlap among these datasets, ensuring their independence. For further details on the network
architecture and implementation, please refer to the supplemental materials.

4.1 Evaluation on Multilevel Processing
GAT blocks allow for the continuous aggregation of vertex features from first-order neighbors. The
field within which a single vertex can exert influence is equivalent to the depth of the GAT-based
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Fig. 3. The attribution results of the single-level network and our multilevel one. The deformation result in
our network always receive a broader impact from ambient vertices.

Fig. 4. The deformation results of the single-level network and ours.

network architecture. However, should the network lack sufficient depth, it could potentially fail to
spread specific vertex information to the extent necessary for accurately simulating the information
integral to clothing deformation. The pooling method provides a direct way to extend the influence
range of a vertex. Within a network of equivalent depth, two pooling operations can increase the
influence field of a vertex by four neighborhoods. To thoroughly evaluate the effects of multilevel
processing, we construct a network devoid of pooling for comparison. In this setup, the GATs
involved in multilevel processing are cascade connected to produce a single-level network.
While pooling might intuitively be perceived as advantageous for the neural simulation of

garment deformation, we cannot analyze the influence field of a vertex in practice. Thus, we
incorporate into the experiment the method of attribution calculation, a technique commonly used
within the realm of neural network interpretability research. At its core, the attribution method
computes the contribution of vertices in the input graph that bear an impact on a particular output
result. If some vertices has a substantial impact on the deformation results, these vertices will be
highlighted in the heatmap generated by the attribution value calculations.
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Fig. 5. Structure preservation between different graph pooling strategies. Starting from the original template
dress, we show the results for pooling once and twice.

More specifically, we use an attribution calculation method [Shi et al. 2022] based on Aumann-
Shapley values. This method incrementally introduces input features, calculating and accumulating
gradients at various stages, thereby deriving the causal correlation between input and output.
For the sake of simplified representation, we primarily focus on the graph feature 𝑋 within the
model input. The output 𝑓𝑖 (·) represents the position of the vertex 𝑖 in the conclusive deformation
prediction, where 𝑓 stands for the deformation network. Then, we have:

𝑅𝑖 = 𝑋

𝑁𝑠∑︁
𝑘=1

1

(1 − 𝜉2
𝑘
)
[
𝑃 ′
𝑁𝑠
(𝜉𝑘 )

]2 𝜕𝑓𝑖
(
1/2(1 + 𝜉𝑘 )𝑋

)
𝜕𝑋

, (9)

where 𝑁𝑠 is the number of sample points in Gauss-Legendre quadrature for approximating the
definite integral. 𝜉𝑘 is the quadrature point of the 𝑘-th Legendre polynomial. 𝑃 ′

𝑁𝑠
is the derivative

of Legendre polynomials at the sample point. In our experiments, 𝑁𝑠 is set to 50, and 𝑅𝑖 is the
attribution result which has the same size with the input 𝑋 . The heatmap is generated using
attribution result dimensions corresponding to normals.

The attribution results show the factual field influencing the vertex, assisting in the examination
of specific deformation regions. As shown in Fig. 3, the vertices in our network receive a broader
impact, resulting in a more comprehensive deformation. In the single-level structure, the vertices
contributing to deformation primarily cluster around the vertex under analysis. This concentration
can invariably impact the simulation performance of forces involved in deformation. As shown in
Fig. 4, the single-level deformation of the yellow dress does not create a coordination effect between
the upper and lower body of the dress. Conversely, our deformation results tend to demonstrate
superior consistency overall and can generate larger wrinkle areas on tested garments, as shown
in the bottom line of Fig. 4. Moreover, our findings suggest that employing multilevel processing
after two rounds of pooling and unpooling presents a beneficial balance between speed and quality.
Quantitative results are also provided in first and last rows of Table 1. The experimental findings
suggest that converting a cascade connected structure into a multilevel one is more conducive for
simulating garment deformation.
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Fig. 6. Qualitative deformation results of applying different pooling strategies.

4.2 Evaluation on Different Pooling Strategies
We test the structural preservation capabilities of various pooling strategies on different meshes,
specifically comparing ours with TopKPool [Gao and Ji 2022], SAGPool [Lee et al. 2019], and
ASAP [Ranjan et al. 2019] strategies. As shown in Fig. 5, our approach effectively achieves mesh
sparsification while preserving the global structure after one and two rounds of pooling. Unlike
other methods, our approach pools all nodes on every alternate breadth-first-search frontier. This
approach, both more direct and simple, ensures a comprehensive representation of the garment
mesh. It guarantees that no specific region of the mesh is disproportionately overlooked, leading to
a more uniform preservation of the mesh structure. The other three methods are learnable pooling
strategies. They either retain the top-k nodes based on a scalar projection score, use a self-attention
mechanism to select important nodes, or utilize a structure-aware score to choose which nodes to
keep. These methods can sometimes lead to the exclusion of vertices in specific regions, resulting
in the loss of that structural region. Notably, ASAP is effective at maintaining boundaries of the
mesh, but its preservation of the interior structure is less satisfactory. Overall, other methods
might be more appropriate for graph data where node importance varies considerably, such as in
protein or molecular graphs. In contrast, our method excels in preserving mesh structure, making
it particularly adept for tasks involving garment deformation.

In addition, we present qualitative deformation results of applying different pooling strategies in
Fig. 6. For unseen garments, body shapes, and motions, our proposed pooling method effectively
captures global features related to deformations. This capability assists the model in generalizing
to unseen test data and in producing reliable deformation predictions. Alternately, approaches that
employ other learnable pooling methods necessitate the assignment of importance scores to nodes
and subsequent pooling based on these scores. However, these scores are occasionally overfitted,
which can hinder generalization and result in issues such as regional deformation artifacts and
loss of detail in the final outputs. Approaches exhibiting strong structure preservation tend to
enhance the quality of the final deformation results. Quantitative results are also provided in Table
1. As the animation behavior of dresses is more complex, it is anticipated that dresses would have
higher errors than jumpsuits. The results also reveal that not all employed graph pooling strategies
consistently outperform the single-level method. In contrast, our method results in the lowest error,
further demonstrating its suitability for the task of garment deformation.
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Table 1. Quantitative deformation results of applying multilevel processing and different pooling strategies.
For two types of garments, dresses and jumpsuits, we measure two metrics: the average vertex distance 𝐸verts
(mm) and the average angular deviation of vertex normals 𝐸norm (◦) between predictions and PBS.

Jumpsuit Dress
𝐸verts / 𝐸norm 𝐸verts / 𝐸norm

Single-level 29.27 (±45.62) / 17.72 (±18.37) 31.54 (±71.05) / 20.67 (±23.15)
TopKPool 29.95 (±47.27) / 18.57 (±19.58) 32.74 (±75.73) / 19.95 (±23.74)
SAGPool 32.04 (±53.03) / 19.35 (±20.85) 40.39 (±82.55) / 22.50 (±25.82)
ASAP 31.02 (±47.05) / 18.78 (±18.16) 32.92 (±74.37) / 20.35 (±21.89)
Ours 22.94 (±27.61) / 12.75 (±13.80) 24.93 (±48.56) / 16.61 (±21.72)

Fig. 7. The deformation and attribution results on three different body shapes.

4.3 Evaluation on Different Body Shapes
The experiments presented in the previous subsections affirm that our method is capable of
producing natural deformation predictions for novel garments and motions. We further explore the
impact of distinct body shapes (regular, fat, thin) on the deformation of the same (also unseen in
training) garment. As depicted in Fig. 7, the first row exhibits the deformation results predicted by
our method. It can be observed that the intricate folds in the garment are intimately related to the
body shape, highlighting the effectiveness of our method in learning these types of deformation
information. Moreover, we provide the corresponding attribution results in the second row. For a
sample vertex, variation in the factual field influencing it across different body shapes is evident.
This variation in the factual field confirms the capability of our method to adaptively extract
information from neighboring vertices, while simultaneously exhibiting the adaptability of the
model in capturing rich deformation patterns associated with different body shapes.

4.4 Comparison to Existing Methods
In our study, we benchmark our approach against three state-of-the-art methods, including DANet
[Li et al. 2023a], NCS [Bertiche et al. 2022], and HOOD [Grigorev et al. 2023]. Their primary
distinctions lie in their ability to generate realistic deformations on diverse garments, and their
speed of inference, as depicted in Table 2. A check mark in the table indicates full capability, whereas
an X mark signifies a lack of ability. DANet lacks dynamic processing capabilities, it looks very
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unnatural when processing sequence actions. Although NCS show robust generalization to novel
motions, they fall short of processing diverse garments within a unified network. Contrastingly, our
method can generate detailed and realistic deformations for diverse garments at a hard real-time
speed. This increases the practical appeal of our method, particularly in scenarios requiring multiple
garment types. For more replication details, please refer to the supplemental materials.

Table 2. Comparison with state-of-the-art methods in garment generalization, batch support, and inference
speed.

Dynamics Generalization Batch Support Speed

DANet % ! ! 297.3
NCS ! % ! 853.9

HOOD ! ! % 13.4
Ours ! ! ! 402.1

For inference time, we observed a significant increase of more than 30% in runtime during
the replication of NCS. This occurred even though we retain identical network structures, and
the same input and output configurations as the original NCS implementation. This discrepancy
might be attributed to the backend architecture of the deep learning frameworks. Hence, we
directly report the time performance results as presented in the original paper. DANet, NCS, and
our method all deliver results that can also be categorized as hard real-time. Both DANet and
our method leverage graph learning for garment mesh deformation; however, they rely on a
two-step process for predicting deformations. In contrast, as demonstrated in Sec. 3.2, our model
is compact and streamlined, integrating specialized components for handling different types of
features. It utilizes temporal weights and blend shapes to directly compensate for deformation
details, enhancing the efficiency of deformation estimation. On the other hand, HOOD fails to
achieve this level of efficiency as it cannot process motion sequences in batches, diminishing the
value of using deep neural networks. Another important difference is that NCS and HOOD are
trained with unsupervised losses. Despite their advantage in reducing data preparation compared
to our supervised method, their lack of effective evaluation indicators during training makes it
challenging to control the overall training progress. In contrast, supervised losses allow us to
directly monitor the optimization status. Moreover, the test results in Fig. 8 demonstrate that our
method achieves the closest approximation to the ground truth.
The ultimate aim of garment deformation is to enhance the user experience. To assess this, we

create animation videos using three garments for a user study, with some qualitative results shown
in Fig. 8. We recruited 35 participants for this study, 12 with expertise in graphics and 23 with
computer science knowledge but no specific knowledge of computer graphics. Participants were
asked to watch all animations, presented in a random order, and subsequently rate each on the basis
of realism and detail richness separately. The rating system comprised four levels, ranging from 0
to 3, with each score being assigned only once. Participants were allowed to replay any animation
multiple times during the scoring process. As shown in Fig. 9, our method generally outperforms
others in terms of detail richness, particularly in creating detailed wrinkles in the waist area of the
short jumpsuit. On the other hand, we discover NCS exhibits superior performance in terms of
realism. However, it is important to highlight that the NCS model was trained specifically with
these garments, a condition not replicated with the other methods during training.
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Fig. 8. Examples from different methods used in the user study.

Fig. 9. User evaluations of the realism and detail richness in the garment deformations generated by the
tested methods.
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5 CONCLUSIONS
We have presented a graph learning-based method for predicting fine-level deformations of compli-
cated garment deformation, achieving a speed approximately 30 times faster than physics-based
simulators. Our unified model demonstrates the ability to generalize to unseen garments, body
shapes, and poses, without compromising deformation quality. To realize this, we initially propose
an innovative, comprehensive representation of the garment graph which efficiently incorporates
deformation cues from multiple information sources. Subsequently, we introduce utilitarian pool-
ing and unpooling strategies for maintaining graph structure, and design a multilevel processing
module to ensure effective feature transition within the graph. The efficient representation and
processing of features contribute to the generation of realistic garment deformations. Lastly, we
utilize attribution analysis to enhance the interpretability of our approach, which show practical
ability in case analysis.

There are also some limitations that could be addressed by follow-up works. Despite our method
showing superior performance on self-collision in comparison to self-supervised methods, fully
resolving self-collisions, particularly in garments with complicated folds and overlaps, remains a
complex challenge. The design of appropriate loss functions or the development of innovative post-
processing methods could be promising direction for future exploration. Additionally, while our
method is applied to the SMPL human body model and can be adapted for other basis human body
models, it necessitates the body to have a fixed number of joints and vertices. Future research could
explore a more general representation and processing mechanism for the human body information.
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A APPENDIX

Algorithm 1: Pooling a fine graph G0 to generate a coarse graph G𝑐 .
input :original graph G0 = (X0, E0) , first-order neighboring N0

output :coarse graph G𝑐 = (X𝑐 , E𝑐 )
𝑒𝑒𝑐𝑐 ← eccentricity of G0 ;
𝑥𝑐𝑒𝑛𝑡𝑒𝑟 ← select first from { 𝑥𝑖 ∈ X0 |𝑒𝑒𝑐𝑐

𝑖
=𝑚𝑖𝑛 (𝑒𝑒𝑐𝑐 ) } ;

for 𝑥𝑖 in X0 do
𝑑𝑖 ← geodesic distance of (𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑥𝑖 ) ;

end
X𝑐 ← {𝑥𝑖 ∈ X0 | 𝑑𝑖 mod 2 = 0} ;
X𝑟 ← {𝑥𝑖 ∈ X0 | 𝑑𝑖 mod 2 = 1} ;
for 𝑥𝑖 in X𝑟 do
X𝑓 𝑟𝑜𝑚 ← {𝑥 𝑗 ∈ X0 | 𝑒𝑖 𝑗 ∈ E0 & 𝑑 𝑗 = 𝑑𝑖 − 1} ;
X𝑡𝑜 ← {𝑥 𝑗 ∈ X0 | 𝑒𝑖 𝑗 ∈ E0 & 𝑑 𝑗 = 𝑑𝑖 + 1} ;
for 𝑥 𝑗 in X𝑓 𝑟𝑜𝑚 do

for 𝑥𝑘 in X𝑡𝑜 do
𝑎𝑑𝑑 (𝑒 𝑗𝑘 , E𝑐 )

end
end

end
for 𝑥𝑖 in X𝑐 do

for 𝑗 in N0
𝑖
do

if 𝑥 𝑗 ∈ X𝑐 & 𝑒𝑖 𝑗 ∉ E𝑐 then
𝑎𝑑𝑑 (𝑒𝑖 𝑗 , E𝑐 )

end
end

end

Algorithm 2: Unpooling a coarse graph G𝑐 to generate a fine graph G0.
input :coarse graph G𝑐 = (X𝑐 , E𝑐 ) , fine graph edges E0, removed vertex features X𝑟 , first-order neighboring N0

output :fine graph G0 = (X0, E0)
Initialize elements 𝑥0

𝑖
in X0 = with zero ;

N𝑐0
𝑖
← {𝑗 | 𝑗 ∈ N0

𝑖
& 𝑥 𝑗 ∈ X𝑐 } ;

N𝑟0
𝑖
← {𝑗 | 𝑗 ∈ N0

𝑖
& 𝑥 𝑗 ∈ X𝑟 } ;

for 𝑥𝑟
𝑖
in X𝑟 do

for 𝑗 in N𝑐0
𝑖

do
�̂�𝑖 𝑗 =

𝐴𝑖 𝑗∑
𝑖′∈N𝑟0

𝑗
𝐴𝑖′ 𝑗

;

end
end
for 𝑥𝑐

𝑖
in X𝑐 do

𝑥0
𝑖
= 𝑥𝑐

𝑖
;

end
for 𝑥𝑟

𝑖
in X𝑟 do

𝑤𝑖 𝑗 =
�̂�𝑖 𝑗∑

𝑗∈N𝑐0
𝑖

�̂�𝑖 𝑗
;

𝑥0
𝑖
=
∑

𝑗∈N𝑐0
𝑖
𝑤𝑖 𝑗𝑥

𝑐
𝑗
;

end
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