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Traffic Scene-Informed Attribution of Autonomous
Driving Decisions
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Abstract—Deep neural networks (DNNs) have advanced au-
tonomous driving, but their lack of transparency remains a major
obstacle to real-world application. Attribution methods, which
aim to explain DNN decisions, offer a potential solution. However,
existing methods, primarily designed for image classification
models, often suffer from performance degradation and require
specialized algorithmic adjustments when applied to the diverse
models in autonomous driving. To address this challenge, we
introduce a universally applicable representation of traffic scenes,
forming the basis for our unified attribution method. Specifi-
cally, we leverage the first-order Taylor expansion at a specific
hidden layer, i.e., the product of gradients and feature maps, to
represent abstract traffic scene information. This representation
guides both the optimization of attribution path generation and
the attribution computation, enabling consistent and effective
attributions for both lane-change prediction and vision-based
control models. Experiments on two distinct autonomous driving
models demonstrate that our approach outperforms state-of-the-
art methods in explanation accuracy and robustness, advancing
the interpretability of DNN-based autonomous driving models.

Index Terms—Autonomous driving, neural networks, attribu-
tion methods, explainable artificial intelligence.

I. INTRODUCTION

HE advancement of artificial intelligence, particularly
in autonomous driving technologies, presents significant
potential for enhancing vehicular safety and reducing the
reliance on human labor [1], [2]. Recent integration of deep
neural networks (DNNs) has driven substantial progress in
critical applications such as traffic object detection [3], [4],
scenario understanding [5], [6], trajectory prediction [7], [8],
path planning [9], [10], and end-to-end decision-making [11],
[12]. However, despite numerous advancements, the inherent
opacity of DNN decision-making processes remains difficult
to interpret, continuing to hinder transparency in autonomous
driving.
Explaining DNN models in autonomous driving requires
clarifying the rationale behind their output given specific
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Fig. 1. Tllustration of our attribution explanation. Our method extracts traffic
scene information and provides a unified attribution computation model to
generate explanations across different models. In the lane-change model
example, the attribution explanation highlights the contributions of the ego
vehicle’s minimum speed and the maximum headway distance of the left-
preceding vehicle (relative to its preceding vehicle) to the model’s left lane-
change prediction. For the vision model example, the explanation reveals that
the traffic light and the white vehicle ahead are the primary factors influencing
the model’s decision.

inputs. Although numerous attribution studies, predominantly
focused on image classification [13]-[16], have emerged to
address this need, the diversity of tasks and models in au-
tonomous driving presents unique challenges. Autonomous
driving models range from end-to-end vision systems to lane-
change models relying on communication or perceptual data
[17]-[19]. Directly applying image classification attribution
methods to these models often yields misleading results. For
instance, the Aumann-Shapley (AS) method [20], despite its
known efficacy in other domains, can incorrectly attribute
importance to irrelevant features in a discretionary lane-
change model [19]. Although designing model-specific attri-
bution methods could improve accuracy, the resulting variance
in computation methods complicates comparative analysis.
Therefore, a key challenge in understanding autonomous driv-
ing decision-making lies in developing a unified and accurate
attribution computation model applicable across diverse traffic
scenarios and tasks.

Unlike conventional classification tasks with relatively
straightforward scenarios, traffic scenes are inherently complex
and highly sensitive to subtle changes that can significantly
influence decision-making [21], [22]. This complexity explains
why existing attribution methods, often designed without
explicit consideration of traffic scene information, struggle
to maintain quality and generalize across different models
in autonomous driving. Importantly, traffic scene information
mentioned here is not merely data acquired at the perceptual
level; rather, it represents an abstract, implicit representation of
scene information processed by DNNs. By incorporating this
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abstract information into the AS attribution computation, our
method substantially improves attribution quality and enables
robust application across diverse autonomous driving models,
including both lane-change and vision-based models.

To effectively represent traffic scene information, our
method draws inspiration from studies on Taylor expansions
of DNNs [23], [24]. These studies demonstrate how DNNs,
or specific hidden layers within them, can be decomposed
to extract crucial information from given inputs. We utilize
the first-order term of the Taylor expansion, specifically the
product of gradients and feature maps (GFM) at a specific
hidden layer, to provide a deep and abstract representation of
the input traffic scenario. This GFM representation guides our
attribution computation process.

More specifically, we employ GFM to define the integration
path in the AS attribution computation. This path aligns the
integral process of attribution computation with the gradual
reconstruction of traffic scene information, effectively mini-
mizing incorrect attributions. Although the endpoint of this
integration path is readily available, i.e., the input sample being
explained, the starting point requires careful consideration.
To obtain the starting point, we develop an optimization
method based on the distribution of traffic scene features. This
method generates a starting point that accurately represents the
absence of the current scene information, thereby triggering
decision changes crucial for extracting the relative importance
of features. The defined integration path enables us to generate
accurate attribution explanations across different model archi-
tectures in a unified form, as shown in Fig. 1. The lane-change
model used is based on the work presented in [19], while the
vision model is a DenseNet-based architecture as described in
[25].

In summary, the primary contributions of this work are as
follows:

o By abstracting traffic scene information as GFM and inte-
grating it into the AS attribution computation, we develop
a unified and highly generalizable attribution method. We
demonstrate our method by applying it across diverse
autonomous driving models with substantial functional
differences, consistently achieving superior performance.

o Technically, we use GFM to design a context-aware
attribution integration path, and determine its starting
point based on the distribution of traffic scene features.
This ensures that the attribution computation is informed
by traffic scene throughout the entire path, enabling more
accurate interpretation of model decision-making.

II. RELATED WORK
A. Attribution Methods for Autonomous Driving

Attribution methods constitute a fundamental approach for
explaining the decision-making process of DNNs. These meth-
ods assign attribution scores to input features, quantifying
their relative contribution to a specific decision [26]. Attri-
bution methods can be broadly categorized into perturbation-
based, propagation-based, and other approaches. Propagation-
based methods have emerged as the dominant approach due
to advancements in graphics processing units (GPUs) and

deep learning libraries, which have significantly improved the
efficiency of forward and backward propagation within DNNSs,
enabling efficient computation of attributions. Our proposal,
grounded in the Aumann-Shapley (AS) value, falls within the
category of propagation-based methods.

Perturbation-based methods calculate attributions by in-
troducing perturbations to input features and observing the
resulting changes in the output. For instance, Li et al. [27]
adapted the original Shapley value computation, a classic
perturbation-based approach, to lane-change models, calculat-
ing attributions based on marginal contributions and signifi-
cantly enhancing the decision interpretability. Sacha et al. [28]
leveraged semantic segmentation information to adaptively
identify key features within the DNN. DeepLIFT, introduced
by Shrikumar et al. [29], compares neuron activations against
a reference state to trace the influence of different neurons.
While versatile, perturbation-based methods often suffer from
computational inefficiency due to the repeated iterations or
operations required for each input perturbation.

Propagation-based methods leverage back-propagated gra-
dients and forward-propagated feature representations for at-
tribution computation. Chormai et al. [30] enhanced layer-
wise relevance propagation (LRP) by integrating principal
component analysis and independent component analysis to
extract concept subspaces, focusing attributions on informa-
tion actively used by the DNN. Yang er al. [31] introduced
important direction gradient integration (IDGI), incorporating
the concept of important directions into integrated gradients
to effectively reduce noise in pixel-attribution results. Chen et
al. [32] proposed PropShapley, a Shapley-value propagation
model designed to facilitate attribution computation across
different modalities within DNNs. Zhang et al. [33] developed
salient manipulation path (SAMP), a path attribution method
that efficiently identifies a near-optimal manipulation path
from a predefined set, validating its effectiveness on several
image classification datasets. Li et al. [34] analyzed the influ-
ence of model weights and sample features on LRP, leading
to the development of weight-dependent baseline LRP (WB-
LRP) for graph convolutional neural networks. GradShap [35]
has been successfully applied to various autonomous driving
scenarios, including traffic object detection [36] and lane-
change prediction [37], effectively revealing the rationale be-
hind specific decisions. SIAS [38] enhanced the interpretability
of attribution explanations by incorporating semantic labels.
This addition provides a more human-understandable context
for the attributions, linking the model’s decisions to recog-
nizable semantic blobs. Furthermore, several DNN attribution
methods originally designed for fields like biology, economics,
and psychology [39]-[42] could be adapted, with minor modi-
fications, to enhance the explainability of autonomous driving
models.

Other attribution methods combine techniques like prop-
agation, perturbation, and attribution baselines, as seen in
approaches such as LRP optimization [43] and attribution
aggregation [44]. Although existing methods effectively estab-
lish input-output causality, many are highly specialized and
challenging to adapt or generalize to different autonomous
driving models without sacrificing accuracy. This lack of
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generalizability results in inconsistent attribution computation
principles across various models, directly impacting the relia-
bility and comparability of the generated explanations.

B. Explainable Autonomous Driving Models

The use of attention mechanisms for building interpretable
autonomous driving models has been extensively explored
across various tasks, including object detection [45], [46],
motion forecasting [47], [48], driver attention prediction [49],
and recent end-to-end models [50]-[52]. Attention mecha-
nisms can highlight important features, offering insights into
the model’s decision-making process. Moreover, they only
introduce minimal computational overhead, facilitating real-
time interpretability analysis.

However, compared to attribution methods, attention mecha-
nisms face two key challenges in practical applications. First,
attribution methods can benefit from theoretical guarantees,
such as the axiom constraints inherent in Aumann-Shapley
attributions, providing a stronger theoretical foundation for the
explanations. Attention computations, on the other hand, often
lack such formal interpretability constraints. Second, attention
models typically exhibit architectural specificity, performing
optimally within self-attention-based networks and potentially
underperforming or being inapplicable in other architectures.

III. PRELIMINARY OF AUMANN-SHAPLEY ATTRIBUTION

To address the opacity of the decision-making process in
DNN models, the use of Aumann-Shapley (AS) attribution
has proven effective and offers many desirable properties.
This method, rooted in cooperative game theory, measures
the contribution of individual players to a specific outcome.
When applied to deep learning, it provides a principled way
to determine how input features contribute to a prediction.

For a decision-making model f used in autonomous driving,
given the input data [, it is processed by the model to
produce the output f(z[)). Furthermore, the feature maps ob-
tained at the middle layer [ can be denoted as z(!) = £l (z[°]),
where the superscript [{] for « is omitted for simplicity in sub-
sequent contents. Consequently, f(z) represents the network
decision when the network is truncated at layer [, with x as the
neuron features at this layer. In addition, we define the missing
information state of x as z, and describe the integration path
from Z to x as u(t), where ¢ ranges from O to 1, starting at
1(0) = Z and culminating at u(1) = x. The AS attribution
evaluates the marginal contribution of each neuron 7 to the
final decision, calculated as follows:

¢i = /t io <f <u(t) + ‘("*gj”) - f(u(t))) dt, (1)

where Ou(t);/0t quantifies the infinitesimal change in the i-
th feature x; at t. Here, ¢ ranges from 1 to N, where N
is the total number of features. The path y(¢) has the same
dimensionality as z. The integral calculates the cumulative
effect of this change on the model’s output, with ¢; quantifying
the marginal contribution of x; to the decision-making process.

We next expand the first term of the integrand using the Taylor
series:

7 (e + 257 )
| @
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where the remainder term O(-) accounts for higher-order
corrections which are negligible as dt approaches zero. Thus,
Eq. (1) simplifies to:
Lof(u) ou(t);
" :/ F () Op0): 4,
t

—o Ou(t); Ot
where the first term of multiplier represents the gradient of
the prediction with respect to the ¢-th neuron feature, and the
second term denotes the path direction of the i-th feature. The
resulting attributions adhere to several foundational axioms of
attribution explanation, ensuring that the results are theoreti-
cally sound and meaningful. The core axiom is “efficiency,’
which states that the sum of the attributions, ZZ ¢;, must equal
the difference in the model’s output between the original input
and the starting point: f(u(1)) — f(1(0)). This axiom serves
as a sanity check for the generated attribution scores. Further
discussion regarding attribution axioms can be found in [53].

3)

IV. TRAFFIC SCENE-INFORMED ATTRIBUTION
COMPUTATION

Although AS attribution offers ideal theoretical properties,
its direct application to autonomous driving decision-making
models presents several challenges. These arise primarily from
the diverse nature of model tasks and the complexity of
traffic scenarios. For example, when applied to interpreting
decisions made by lane-change models, the attributions can
often be incorrect or misleading. Moreover, even in the context
of vision-based models, the attribution results may appear
counterintuitive and are frequently affected by noise. These
issues motivate us to think about how to develop a unified
attribution computational model to improve the quality of
attribution in the face of multiple autonomous driving tasks.

A key source of inaccurate attributions stems from arbi-
trarily chosen integration paths, such as straight-line paths,
which often fail to incorporate crucial scene information. Due
to the dispersed and complex nature of relevant data in traffic
scenarios, such paths can inadvertently traverse regions with
high-magnitude gradients and feature maps corresponding to
irrelevant information, leading to misleading attributions that
misrepresent the model true decision-making process. Next,
we will outline the method for designing a path that is
informed by traffic scenes, as well as determining its optimal
starting point. Fig. 2 provides a concise overview of our
attribution computation pipeline.

To reduce misleading and noisy attributions, we incorporate
traffic scene information to guide the integration path direction
for our attribution model. We specifically utilize the first-order
term of the Taylor expansion of a DNN, i.e., the product
of the gradient and feature map (GFM) to extract contextual
insights. Here, acknowledging that changes in the resolution
of the feature map initiate feature aggregation and abstraction
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processes, we leverage GFM from the subsequent layer/block
(denoted by [ + 1) when computing attributions for the layer
l.

The distance d between the GFM of a point on the path
and the target GFM serves as the objective function of path
generation. As the integration parameter ¢ increases, the traffic
information represented by the corresponding point on the path
progressively transitions from a state of missing information
to a complete representation of the current traffic scene. Thus,
the objective function d can be defined as:

d(p(t)) =

af (u(t))
OfI+1 (u(t))

where d represents the L2 distance used to evaluate the dis-
crepancy between the GFM of the current state along the path
1(t) and the GFM of the original input state. The size of p(t)
matches the input 2, while the size of fI'*11(.) corresponds to
the feature map z"*'] at layer [l + 1]. This objective function
aims to ensure that the points along the path rapidly minimize
the difference between the current GFM and the target GFM.
This process effectively represents a progressive approach
towards the target traffic scene. In essence, the function guides
the path along the steepest descent direction within the GFM
space, promoting the fastest convergence to the desired traffic
scenario.

Since DNN feature maps are discrete, the path connect-
ing two GFMs is represented by a sequence of sampled
points. Generating this path can be reframed as optimizing
the generation of these discrete sample points. Then, the
path generation becomes an optimization problem: finding the
optimal direction p(m) and step size n(m) for each iteration
m to minimize the objective distance. The direction p(m) can
be directly derived from the distance objective as follows:

od/ox’

P = Toaraery ®
where ' = p(m/n) represents the intermediate state along the
path at the given step m/n, within the discrete set defined as
{0/n,...,m/n,...,n/n}. Here, p is the normalized gradient of
the distance d, which provides the direction that most rapidly
decreases the distance. Given 1(0), u(1), and the direction
of each step p(m), we then determine the step size n(m) by
optimizing a simple objective function:

argmin (1) = (4(0) + 3 pmim(m) |, ©

2

where 7n(m) represents the step size. The optimized p and 7
allow for precise control in regions with significant feature ac-
tivity, while also enhancing efficiency across less critical areas,
thereby maintaining the model’s accuracy and computational
viability. As a result, the traffic scene-informed path is updated
by

m—+1 m

[ <n> =pu (g) + p(m)n(m). 7

Having established the methodology for calculating the
path, it is crucial to also determine another key parameter

Fig. 2. Brief pipeline of our attribution computation. Our method accom-
modates different types of autonomous driving models without requiring any
modifications. By leveraging traffic scene information and feature distribution,
we define the complete attribution calculation path, ultimately generating
attribution explanations in different models.

that significantly influences the attribution results: the starting
point Z of the path (i.e., 1£(0)). This point is also considered
as an attribution baseline representing the lack of information
with respect to x and is chosen to trigger decision shifts.

In prior applications of AS attribution, especially with
image classification models, the starting point typically aims
to reduce the model’s prediction score to zero, representing
the absence of the target information. However, we find
this assumption inappropriate for autonomous driving models.
Unlike classification scenarios with thousands of labels, lane-
change models typically have only three decisions (keep lane,
left lane change, right lane change), and end-to-end vision
models often have only four (keep forward, stop, turn left,
turn right).

Consequently, changing a model’s decision only requires
lowering the current decision’s score below the average. This
signifies a lack of information supporting the original decision.
For instance, in a three-output lane-change model, reducing
the decision score below s = 1/3 during starting point
optimization fulfills the core principle of AS attribution. With
three output categories and a total probability of 1, any score
below average necessitates a decision change.

To enhance optimization, we further reduce this threshold
by 10% to 0.3. This ensures a robust decision change and a
higher-quality starting point. The score loss is then defined
accordingly:

ﬁscore = (f(i') - 5)2 5 (8)

where Z is the starting point, s stands for the score target. This
loss can reduce the score just enough to trigger a change in
decision.

Furthermore, the attribution computation model in Eq. (3)
relies on omitting higher-order terms in the Taylor expansion.
This approximation requires that the starting point £(0) and
endpoint 1(1) remain close. We design this constraint based
on the feature distribution observed in autonomous driving
scenarios. First, we estimate the hidden layer feature dis-
tribution using the entire dataset. As the spatial dimensions
of feature maps generally lack universality, we retain only
the 10th percentile of each channel in the feature maps as
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constraints. Because a small percentile typically represents the
lower bound of a specific feature’s distribution, we use this
value to constrain the optimization range of z:

Lrange = max (|[|lz — 2| — 7]|2,0),
T=Eyox {Qo.l (f[l] (fU[O]))] ) ®

where z[% represents an initial input sampled from the input
distribution X', and fU(-) denotes the output after the layer [.
(0.1 means the 10th percentile value, calculated independently
for each channel. Then, the overall optimization objective for
the starting point Z is:

arg II%ID Escore + )\Erangev (10)

where )\ is used to balance two terms. We directly utilize the
Adamax optimizer during the optimization process. However,
in addition to the score and range constraints,  has another
special property. Because it represents the absence of infor-
mation relevant to the current decision, the gradient produced
by a trained model for an input representing missing features
should have a larger magnitude than that for a common input.
This aligns with the principles of model training, where out-
liers typically generate larger fluctuations in gradient updates.
Therefore, we introduce a hard constraint, i.e., the absolute
value of the gradient at £ must be bigger than the absolute
value of the gradient at the original input z:

of(x)| _|0f(x)

ox; ox; ’
If, during the optimization process, a specific neuron violates
the constraint, we apply a small step update until it returns
to the valid range: Z; + Z; + Bsgn (0f(Z)/0Z;). We set the
step size, 3, to 70% of the optimizer’s current learning rate.
Although a smaller 8 could theoretically improve precision,
it would also negatively impact optimization efficiency. Con-
versely, a value close to the learning rate does not introduce
noticeable numerical errors. With the complete path defined,
we can compute the attributions for any layer of a given
autonomous driving model.

<

(1)

V. EXPERIMENTS
A. Datasets and Models

Autonomous driving datasets. Our experiments primarily
utilize two autonomous driving datasets: HighD [54] and BDD
[55], [56].

The HighD dataset focuses on highway lane-change maneu-
vers collected using drones on German highways. It encom-
passes over 110,500 vehicles and encompassing a variety of
lane-change scenarios, including left and right lane changes,
as well as forced lane changes. A key feature of the dataset
is the high-frequency data acquisition at 25Hz, allowing for
detailed analysis of subtle changes in vehicle behavior during
these maneuvers. Furthermore, HighD offers rich information
on vehicle interactions, including the speed, acceleration, and
distances of surrounding vehicles, providing crucial context for
understanding the complex dynamics involved in lane changes.

The BDD dataset consists of 10,000 video clips (total-
ing approximately 1,000 hours) primarily collected in New

York, Berkeley, San Francisco, and the Bay Area. It includes
synchronized GPS/IMU data from mobile devices, enabling
approximate trajectory reconstruction, and spans a wide range
of weather conditions (sunny, overcast, rainy) and lighting
scenarios (daytime/nighttime). BDD also provides multi-task
annotations for perception tasks, including object detection,
semantic segmentation, lane detection, and instance segmenta-
tion, making it a valuable resource for training and evaluating
autonomous driving models.

Autonomous driving models. Our experiments mainly
include two models: a discretionary lane-change (DLC) model
[19] based on contextual information and the driving styles
of surrounding vehicles, and an end-to-end vision-based au-
tonomous driving model.

The DLC model [19] leverages the Driving Operational
Picture (DOP) as a key feature representing driving style. The
DOP information is input into a DNN to predict one of three
possible decisions: lane keep, left lane change, or right lane
change. DOP is structured as a matrix comprised of seven
statistical features and eight vehicle features. The rows of the
matrix represent the statistical measures: mean, standard devi-
ation, median, 25th percentile, 75th percentile, minimum, and
maximum, calculated across the eight vehicle features. These
vehicle features, forming the columns of the matrix, include
relative longitudinal position (X), relative lateral position (Y),
longitudinal velocity, lateral velocity, longitudinal acceleration,
lateral acceleration, space headway, and time headway. The
vehicles considered for feature extraction are the ego vehicle
(Ego), preceding vehicle (P), preceding vehicle in the left and
right adjacent lane (LP and RP), following vehicle in the left
and right adjacent lane (LF and RF), and alongside vehicle in
the left and right adjacent lane (L and R). That is, the input
of the DLC model includes eight DOP matrices. The model
incorporates a two-second reaction time assumption for lane-
change decisions, reflecting typical human driver behavior.
Training of the DLC model is performed using the HighD
dataset.

The vision-based model employs a DenseNet architecture
[25], adapted for autonomous driving, and trained on the BDD
dataset [55], [56] following the implementations described in
[2], [57]. This densely connected network takes a visual image
as input and predicts one of four driving actions: keep forward,
brake, turn left, or turn right. The model training scheme
can be categorized as imitation learning, because the training
data labels are derived from image annotations provided by
experienced human drivers.

B. Implementation Details

Parameter selection. In practice, our computation of attri-
butions uses a discrete integration method with 100 sampling
points (n = 100). This configuration ensures that the generated
attributions closely approximate the output score, effectively
satisfying the “efficiency” axiom. According to this axiom, the
sum of the attribution values should closely match the model’s
output logit score. Satisfying the axiom not only enhances the
credibility of the attributions but also facilitates their numerical
validation. Increasing the number of sampling points reduces
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the step sizes, theoretically improving accuracy. However,
we observe diminishing returns beyond a certain point, with
no significant gains in accuracy. Conversely, using too few
sampling points increases the step size, often introducing
uncontrollable noise.

Our empirical findings suggest that optimal results are
achieved through a two-stage process: first, independently
optimizing each term in Eq. (10) while monitoring their
magnitude, then setting A such that the value of Lppe ap-
proximates half the value of Ly.o. Excessively small A\ value
risks neglecting the constraint on Z, potentially generating
adversarial samples, while overly large A value impedes the
convergence of Lyore. This parameter requires manual finetun-
ing tailored to the specific model architecture and optimization
algorithm.

Computational cost. Our experiments are conducted on
two platforms: a server with dual NVIDIA RTX A6000
GPUs and a local machine with Intel I9 13900K CPU and
an NVIDIA RTX 4090 GPU. The computational cost was
performed on the local machine. Our attribution method,
designed for offline explanation generation due to its iterative
optimization workflow, requires 6.72 seconds to process the
DLC model and 28.64 seconds for the vision model per input
sample. The computation comprises two iterative phases: 1)
starting point optimization dominates 64% of the total runtime,
and 2) path optimization, which refines the integration path and
accounts for 29% of the runtime. Even with batch processing
and a batch size of 32, processing a single input sample
for the vision model still takes approximately 0.9 seconds.
These results position our proposal as a practical tool for
post-hoc analysis rather than real-time onboard deployment
in autonomous driving systems.

C. Attribution Comparison on Lane Change Model

In this section, we conduct attribution explanation exper-
iments on the DLC model [19]. We begin with a quanti-
tative comparison against other attribution methods adapt-
able to lane-change models, demonstrating the advantages of
our proposal. Then, we proceed with a qualitative analysis,
showcasing the explanatory power of our method through a
representative attribution example.

Quantitative comparison. To quantitatively compare our
approach, we compare it against several recent and relatively
general attribution methods applied to the DLC model: PRCA
[30], WB-LRP [34], IDGI [31], SVCE [27], PropShap [32],
and SAMP [33]. Both PRCA and WB-LRP rely on layer-wise
relevance propagation. Adapting their relevance propagation
rules to specific hidden layer structures can be challenging.
However, because the DLC model’s hidden layers primar-
ily consist of linear and ReLU activations, no specific rule
adjustments are required for these layers. We handle the
DLC model’s multiple branches by distributing attributions
proportionally to branch weights. IDGI, SVCE, PropShap, and
SAMP are model-agnostic, requiring minimal modification for
application to the DLC model. SVCE, originally applied to
a reinforcement learning lane-change model using Shapley
values, is adapted to the DLC model with random sampling to

TABLE I
QUANTITATIVE ATTRIBUTION COMPARISON ON THE DLC MODEL.

| Sen-nf AICtT SICT LeRFT MoRF |
PRCA 0.623 0.628 0.641 0.803 0.179
WB-LRP 0.551 0.597 0.613 0.739 0.199
IDGI 0.561 0.592 0.614 0.747 0.187
SVCE 0.512 0.581 0.607 0.716 0.192
PropShap 0.627 0.662 0.678 0.828 0.167
SAMP 0.642 0.657 0.664 0.831 0.152
Zero 0.626 0.665 0.685 0.821 0.166
Uniform 0.581 0.613 0.622 0.794 0.174
Gaussian 0.605 0.602 0.628 0.781 0.162
Lscore 0.609 0.609 0.614 0.775 0.147
DirectPath 0.608 0.649 0.671 0.808 0.171
GradPath 0.596 0.612 0.629 0.774 0.177
Ours 0.685 0.717 0.723 0.889 0.134

reduce computational complexity. Although attribution expla-
nation generation is an offline process, we aim to maintain
a reasonable per-sample explanation time (on the order of
seconds to tens of seconds) to avoid excessive computational
overhead.

We use several quantitative metrics for comparison:
Sensitivity-n (Sen-n) [53], [58], Accuracy Information Curve
(AIC), Softmax Information Curve (SIC) [44], Least-Relevant-
First (LeRF), and Most-Relevant-First (MoRF) [58]. Sen-n is
a key indicator of the attribution “efficiency” axiom, crucial
for theoretical soundness. AIC, SIC, LeRF, and MoRF share a
common goal: quantifying how accurately attributions identify
truly important features. AIC and SIC approach this evaluation
from an information entropy perspective, while LeRF and
MOoRF directly utilize decision scores for a more direct assess-
ment. Together, these metrics provide a comprehensive view
of how accurately the attributions pinpoint critical features,
thereby assessing the reliability and validity of the numerical
attribution values.

The quantitative results (Table I) reveal several key findings.
Shapley-based methods generally perform better in terms
of Sen-n, demonstrating a stronger correlation between the
impact of attributed features and their assigned attribution
values. However, even our best-performing method achieves a
Sen-n score below 0.7 for the DLC model. This suggests that
maintaining high sensitivity, despite theoretical guarantees,
becomes increasingly difficult in practice with greater model
complexity. AIC and SIC evaluate the ability to progressively
recover features based on their attributions, indirectly reflect-
ing the accuracy of capturing critical feature contributions.
LeRF and MoRF offer a more direct assessment of the
attribution distribution’s validity. Our method excels across
these metrics, notably achieving a LeRF score approaching
0.89. This indicates our attributions accurately identify and
appropriately weight critical information.

Ablation study. Our method primarily modifies the inte-
gration path used in attribution calculation, which involves
selecting the path’s starting point and generating the path itself.
The starting point acts as the baseline for attribution calcu-
lation. Existing research [53] has explored various baseline
types for attribution, including blurred features, random noise,
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Fig. 3. Lane-change model attribution explanation. The upper part displays the driving scene where the lane change occurs, with the red vehicle being
the maneuvering vehicle. Yellow labels above each vehicle indicate their respective speeds and IDs. The lower-left part shows the input information to the
model. The lower-right part presents the corresponding attribution results, visualizing the contributions of different input features to the model’s lane-change

prediction.

and the expected value of network features. However, many
existing baselines are often specifically designed for vision
models and may not be directly applicable to other domains.
For autonomous driving applications, we adopt three directly
applicable baselines: zero, uniform noise, and Gaussian noise.
We conduct comparative experiments using these baselines,
with uniform noise bounds and Gaussian parameters (mean
and variance) derived from the dataset’s feature distribution.

A critical requirement for baselines is their ability to rep-
resent feature absence in decision-making. For autonomous
driving models, any baseline that induces a measurable deci-
sion shift satisfies this criterion. Building on this principle, we
design an additional baseline using only the Lo term from
Eq. (10) for ablation studies. Our ablation study evaluates four
baseline variants for the attribution path starting point: 1) Zero,
2) Uniform, 3) Gaussian, and 4) Lg.ore. As shown in Table I,
all baselines yield suboptimal attribution results. Notably, the

zero baseline outperforms other alternatives, suggesting that
simpler baselines may better align with the feature absence
criterion than introducing noise or Ly baselines.
Furthermore, we design two ablation experiments regard-
ing the integration path itself. These involve: 1) DirectPath:
Replacing our proposed path with a direct linear path; 2)
GradPath: Using gradients instead of GFM for guidance. The
results show that GradPath performs worst, suggesting that
gradient information may not effectively capture the implicit
scene representation. The DirectPath also exhibits obvious
decreased performance compared to our baseline.
Qualitative analysis. Fig. 3 depicts a lane-change scenario
involving the red vehicle (ID74). The upper part of the figure
illustrates the overall traffic situation during the lane-change
maneuver, captured by drone footage over a specific road
segment. The lower-left part presents a subset of the model’s
input information, while the lower-right displays the corre-
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Fig. 4. Attribution explanations on vision model. The green characters in the top-right corner of the original images indicate the model’s decision (F: Forward,
S: Stop). Red circles highlight areas of attribution noise and potentially misleading artifacts. In these examples, traffic lights always significantly influence the
model’s output. Because of their small size within the images, these figures are best viewed on screen for optimal clarity.

sponding attributions generated by our method. For clarity,
only the inputs and attributions with significant influence on
the output are shown. Absent vehicles (LF, L, and R in this
case) are also represented in the input matrices. A deep red
color in the head distance and head time signifies infinite
distance for these absent vehicles. Their corresponding X and
Y positions, along with other relevant information, are set
to zero, visually represented by a deep blue. Because the
predicted lane change utilizes information from before the
maneuver occurs, the input features in the lower-left part do
not directly correspond to the traffic scenes depicted above.
The traffic scene information primarily serves to provide
context for understanding the lane-change situation.

Given the input, the model correctly predicts a left lane
change. However, the DNN’s decision-making process remains
opaque. Our generated attribution explanation reveals the
key factors influencing this prediction. The most significant
contributors are: 1) the Ego vehicle’s minimum and 25th per-
centile longitudinal velocities; 2) the LP vehicle’s longitudinal
velocity and its head distance (distance to the vehicle in front,
often infinite due to the LP frequently having no preceding
vehicle); 3) the absence of LF, L, R vehicles; and 4) the relative
position of the RF vehicle. Although all input features receive
attributions; for clarity, we only list these six input feature
matrices that significantly influence the model prediction.

This result suggests that the model’s processing of driving
style features aligns, to some extent, with human driving
intuition. The surrounding context shows the ego vehicle
approaching the lead vehicle at a relatively high speed without
decelerating, implying an intention to change lane, as other-
wise, a collision with the preceding vehicle would be immi-
nent. A safe left lane change requires assessing the left lane’s
state, including the distance and speed of any left-following
vehicle and the presence of any vehicles alongside. The speed
of the preceding vehicle in the target lane is also crucial for a
safe maneuver. Simultaneously, the conditions behind the ego
vehicle must be considered. These considerations align with
the highlighted attributions, demonstrating that the driving
style-enhanced DLC model effectively leverages driving style

TABLE I
QUANTITATIVE ATTRIBUTION COMPARISON ON THE VISION MODEL.

| Sen-nt AICT SICt LeRFT MoRF |
PRCA 0739 0622 0641  0.767 0.162
WB-LRP 0719 0589  0.602  0.748 0.189
IDGI 0741 0615 0622  0.762 0.159
GGCAM 0.604 0552 0568  0.701 0.251
PropShap 0.734 0624 0647  0.778 0.165
SAMP 0779 0658 0.676  0.794 0.125
Zero 0747 0613 0625 0771 0.158
Uniform 0.707  0.607 0623  0.739 0.182
Gaussian 0732 0622 0636  0.778 0.147
Licore 0711 0627 0633  0.759 0.139
DirectPath | 0.722  0.607  0.619  0.762 0.166
GradPath 0716 0582 0595  0.723 0.173
Ours 0.822  0.683 0711  0.835 0.136

information for its predictions. Attribution explanations, there-
fore, not only illuminate input-output relationships but also
reveal parallels between model decisions and human cognition,
providing valuable insights into the behavior of autonomous
driving models.

D. Attribution Comparison on Vision Model

In this section, we apply our attribution method to an end-
to-end vision model, evaluating its performance through both
qualitative and quantitative experiments. For comparison, we
also incorporate a common attribution method, Guided Grad-
CAM, fine-tuned based on established techniques [50], [59].
Unlike the lane-change model which uses structured data,
the vision model receives an image as input. Information is
progressively downsampled within the model, and features be-
come more abstract with decreasing pixel resolution. Although
individual pixels or neurons lack inherent semantic meaning,
feature attributions at any hidden layer can be upscaled to
the original image size, creating a heatmap that highlights
important image regions for interpretability. We select a hidden
layer with a three-fold reduction in image size for attribution
computation. This choice is supported by previous research
indicating that such high-level features exhibit object corre-
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(a) (b)

Fig. 5. Analysis of GFM’s representation ability. a) Changes in the DLC
model’s prediction score after removing features based on GFM; b) GFM
heatmaps that can roughly highlight key regions for the output of the vision
model.

spondence [60], allowing attributions to be mapped to specific
objects for easier analysis.

Fig. 4 provides a qualitative comparison. It demonstrates
that attribution computations without guidance from traffic
scene information can be misleading (highlighted by red
circles). Masking these regions (replacing them with a gray
background) does not significantly decrease the output score
and, in some cases, even increases it. We also use quantitative
metrics for comparison, and as shown in Table II, our method
achieves the best performance across most metrics.

E. Analysis of Traffic Scene Representation

In this section, we analyze GFM’s ability to represent traffic
scene information across different autonomous driving tasks.
For the DLC model, which uses statistical features as input,
the corresponding GFM is an abstract representation of these
features. We design an intuitive evaluation metric to assess
this representation. Features are sorted according to their GFM
values, and then progressively set to zero or infinity based on
the scenario. The resulting change in the output score is then
plotted. An effective representation should exhibit a significant
downward trend in this plot, as removing relevant information
should decrease the decision score. As shown in Fig. Sa,
both left and right lane-change decisions demonstrate this
downward trend for the DLC model. The decision score drops
to zero after removing approximately 20% of the features,
demonstrating GFM’s ability to represent the scene.

For the vision model, we directly visualize the GFM as
a heatmap (Fig. 5b). The resulting heatmap generally corre-
sponds to the key regions influencing the decision, indirectly
demonstrating GFM’s capacity to represent different types of
traffic scene information.

Experiment results confirm that the first-order term of the
Taylor expansion at a specific hidden layer effectively captures
decision-relevant traffic scene information, validating its use
for guiding the integration path in attribution computation.

F. Analysis of Traffic Scene Reconstruction

In this section, we analyze the progressive reconstruction of
traffic information along our attribution path. Our attribution
computation model’s integration path is guided by GFM. The

(a) (b)

Fig. 6. GFM similarity along attribution path. a) Similarity results for the
DLC model; b) Similarity results for the four main hidden layers of the vision
model.

mean
std

75%

median

25%

(a) (b)

Fig. 7. Impact of different statistical features on the model. a) Attribution
contribution of different features; b) Accuracy of different lane-changing
models.

intermediate states, =, along this path represent the gradual
reconstruction of traffic information. To analyze this process,
we use the GFM corresponding to the path’s endpoint (i.e.,
x) as a reference. We then calculate the cosine similarity
between the GFM corresponding to 2’ and the reference GFM
to analyze how the traffic scene information is reconstructed
along the path.

As shown in Fig. 6a, for the DLC model, we directly plot
the GFM information from the subsequent layer used in the
attribution calculation for the input. For ease of comparison,
we normalize the different similarity measures to the range
[0, 1], calculate the average values, and present the results
in Fig. 6. The similarity gradually increases along the path,
demonstrating a gradual reconstruction of the traffic scene.
For the vision model, which has multiple hidden layers, we
select four blocks where resolution changes occur for analysis.
Fig. 6b shows that lower layers struggle to reconstruct scene
features, while higher layers reconstruct them more easily.
This observation aligns with the general understanding that
lower-level features in DNNs typically represent basic, low-
level visual elements, whereas higher-level features encap-
sulate more complex and abstract scene information. The
greater detail present in low-level features contributes to the
increased difficulty in their reconstruction. The reconstruction
process exhibits a smooth and clear progression on these two
different models and various hidden layers, indicating that our
integration path effectively captures the gradual emergence of
traffic scene information.
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Fig. 8. TransFuser architecture. It comprises eight interconnected sub-
modules designed to process multimodal sensor inputs (camera image and
LiDAR), and to output trajectory-guiding waypoints for autonomous vehicles.
The illustration was inspired by [52].

G. Attribution-based Feature Selection

In this section, we use attributions to improve feature
selection for the DLC model. Our analysis of attribution
explanations reveals a consistently low contribution from
standard deviation information across predictions. To quantify
this observation, we aggregate attribution values across all
samples for each of the seven statistical metrics used as input
features: mean, standard deviation, median, 25th percentile,
75th percentile, minimum, and maximum (Fig. 7a). The result
reveals that the standard deviation contributes only 1.6% to
the overall attributions across all lane-change predictions.
Conversely, the 25th percentile, 75th percentile, and minimum
exhibit substantially higher contributions, with the 75th per-
centile contributing the most at 24.3%.

Motivated by this finding, we conduct experiments where
we ablate either the standard deviation or the 75th percentile
feature during model training. The resulted models’ accuracies
are shown in Fig. 7b. Remarkably, removing the standard devi-
ation feature does not negatively impact the model’s predictive
accuracy. In contrast, removing the 75th percentile feature
results in a significant decrease in accuracy. This suggests
that the standard deviation feature is redundant in the model’s
input space and can be removed to reduce computational
overhead. The experiment also demonstrates the utility of
attribution explanations not only for interpreting model outputs
but also for informing the design and optimization of DNN
models for autonomous driving, enabling more efficient model
architectures.

H. Generalization Testing on Multimodal Model

To further validate the generalizability of our method, we
conduct a qualitative attribution analysis using TransFuser
[52], a state-of-the-art autonomous driving model known for
its strong performance and accuracy on the CARLA urban
driving benchmark [61]. TransFuser’s Transformer-based ar-
chitecture uses attention mechanisms to effectively fuse mul-
timodal information from camera images and LiDAR data. As
shown in Fig. 8, the model comprises eight interconnected sub-
modules. The combination of self-attention, multimodal input,
and complex architecture presents a challenging scenario for
attribution methods. Successfully applying our approach to this

intricate model demonstrates its robustness and adaptability to
modern autonomous driving architectures.

Fig. 9 presents the attribution results, demonstrating our
method’s effectiveness in revealing the features influencing
waypoint predictions. Comparing the image and LiDAR at-
tributions highlights the distinct roles of each modality. For
instance, LiDAR struggles to detect traffic lights (left and
middle panels of Fig. 9), while the image branch effectively
localizes them. During a sudden accident scenario (right panel
of Fig. 9), where a bicycle collides with a gray car, the
attribution reveals the model’s focused attention on collision-
relevant regions, demonstrating the model’s ability to capture
critical features even in complex and rapidly evolving situa-
tions. Notably, image attributions exhibit a dispersed pattern,
suggesting the model leverages visual data for global scene
understanding. In contrast, image attribution on purely vision-
based models tends to be more concentrated.

While our method is directly applicable to the TransFuser
model, we identify a critical challenge in assessing these
attributions. Unlike simpler models with score-like outputs,
advanced autonomous driving models like TransFuser produce
complex, multidimensional outputs, such as sequences of
waypoints or control commands. This complexity compli-
cates the use of existing attribution evaluation metrics, which
are typically designed for score outputs. Consequently, our
current analysis focuses on qualitative assessment through
visual inspection of attribution heatmaps. This highlights a
critical need for new evaluation metrics specifically tailored
to the multidimensional output spaces of modern autonomous
driving models. Despite this challenge, we believe future
work will bridge this gap, advancing both attribution methods
and metrics to enhance trust and transparency in complex
autonomous systems.

VI. CONCLUSION

In this work, we introduce a unified attribution method
capable of providing accurate explanations for autonomous
driving models across different task types. Drawing inspiration
from research on Taylor expansions of DNNs, we use the first-
order term (i.e., GFM) of the Taylor expansion at a higher-level
hidden layer to implicitly represent traffic scene information.
The GFM then informs both the design of the entire integration
path for attribution computation, resulting in a traffic-scene-
informed attribution method. A key advantage of our approach
is its broad applicability. Unlike other attribution methods
that often require task-specific adaptations, our method can be
consistently applied to different autonomous driving models,
such as lane-change models and end-to-end vision models,
without modification. Furthermore, our method achieves state-
of-the-art performance across multiple quantitative metrics,
demonstrating its robustness and accuracy.

Although our method demonstrates some strengths, several
promising future directions exist for further development and
improvement. Firstly, although certain desirable properties of
Aumann-Shapley values hold theoretically for simple neural
networks, verifying these properties becomes challenging in
practice as model complexity increases. Developing axiomatic
verification metrics to better ensure the trustworthiness of
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Fig. 9. Attribution results of the image and LiDAR branches. The attributions generated directly highlight the most important features impacting the TransFuser’s
waypoint prediction. These key features typically correspond to prominent objects within the image data and obstacles detected by the LiDAR sensor.

attributions in complex models is a priority for future research.
Secondly, while our method proves effective across various
autonomous driving models with different input modalities,
evaluating attributions from diverse models, particularly mul-
timodal ones, remains a crucial open problem. Developing
robust evaluation metrics for these complex scenarios is essen-
tial for advancing the field. Thirdly, although Shapley values
implicitly capture the contributions of feature combinations,
current methods still evaluate these contributions through
simple summation. A promising research direction involves
analyzing the joint influence mechanisms of feature combi-
nations on decision-making and designing interactive feature
attribution methods that explicitly address these interactions.
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